Botany marches on – Part 2, the eudicots

April 29, 2010

If you did not see part 1 of this post, please take a look at its first paragraph. This post is more on the fall 2009 publication by the Angiosperm Phylogeny Group, the report called APG III. What I’m giving here is how APG III differs from my book, A Tour of the Flowering Plants. This post is primarily for Montessori botany studies and general learners that own my book. (And if you are interested in acquiring A Tour of the Flowering Plants, see www.bigpicturescience.biz.)

The changes in the eudicots include the assignment of Geraniales and Myrtales to the malvids (eurosids II) branch of rosids. These two orders were previously found to be within the rosids, but their exact location was not clear. Now they are sister lineages that branch near the base of the malvids.

Caryophyllales is listed before the asterids, while the Saxifragales is listed before the rosids. This is the way I depicted these lineages on the informal tree diagram in my book, A Tour of the Flowering Plants. The former Caryophyllales family, Portulacaceae, has been divided, as it held several not-closely-related genera. The genera Claytonia, Montia, and Lewisia have been moved to the new family, Montiaceae.

Lastly the Dipsacales order (in the campanulids or euasterids II branch of the asterids) has had several former families combined into an expanded Caprifoliaceae. The twin flower family – Linnaeaceae, the valerian family – Valerianaceae, the teasel family – Dipsacaceae, and the bush honeysuckle family – Diervillaceae have all become part of Caprifoliaceae. This leaves Dipsacales with only two families, Adoxaceae and Caprifoliaceae.

There have been a number of adjustments in smaller families that are not common in temperate North America. I view these as tweaking the twigs, not establishing the branches. All-in-all, the bulk of the APG scheme has been reaffirmed in the last several years.

What difference do all these changes make? Unless you are an editor of scientific papers, it isn’t absolutely necessary to learn the minor adjustments to the APG scheme. The main thing that students need is the phylogenetic view of life and of the angiosperms. If they see these plants as descendents of a common ancestor and know the major lineages, that’s good. Some may want to delve deeper and that should be encouraged. Mabberley’s Plant Book: A portable dictionary of plants, their classification, and uses (third edition, 2008) by D. J. Mabberley is a valuable reference for further study and to help sort out the changes.

How does the Angiosperm Phylogeny Group classification affect horticulture and native plant identification? I can more easily answer when it will affect these two – that will be over a period of time. Field manuals aren’t going to be re-written overnight and horticultural labels frequently lag behind academic classification. Nonetheless, I think that phylogenetic classification will eventually take over. It certainly makes more sense to focus on the APG scheme and look to the future if you want to address plant classification.


Botany marches on – Part 1, basal angiosperms and monocots

April 13, 2010

Warning! I’m going to get into some detailed botany here, so if you are not deeply into the flowering plants and their classification and you do not own my book, A Tour of the Flowering Plants, you may not wish to wade through all this. It is basically for advanced elementary and secondary Montessori botany studies and for anyone else that owns the book. A Tour of the Flowering Plants is still quite useful to show the appearance of angiosperm families, whether or not you are concerned about the latest classification.

Last fall, the Angiosperm Phylogeny Group published a third report concerning the classification of the orders and families of flowering plants. The report, published in the Botanical Journal of the Linnean Society, is called APG III. There is a summary of APG III on Wikipedia. http://en.wikipedia.org/wiki/APG_III_system My book, A Tour of the Flowering Plants, is based on the 2003 report from this group, which is called APG II. The book has some further advances that were published on the Angiosperm Phylogeny Website of Peter Stevens. http://www.mobot.org/MOBOT/Research/APweb/welcome.html

I’ll go over the APG III changes, beginning with this post. If you own my book, you can decide if you want to add notes to it. You may contact me via my website (www.bigpicturescience.biz) if you would like a list of the pages and changes for bringing A Tour of the Flowering Plants in line with APG III.

Will the changes keep coming over the years as we acquire more and more DNA data? I think that future changes will be modest and will not affect the general structure of the angiosperm tree. There aren’t that many unplaced groups left. There will likely be little surprises, like one I give below for Nymphaeales.   

For now, let’s start with the first branches of the angiosperms, grouped as the basal angiosperms in A Tour of the Flowering Plants. The Nymphaeales got another family, Hydatellaceae, which was formerly placed in the grasses. This shows how much DNA studies can reveal, and what studies of morphology may not be able to distinguish. This family is tiny, both in size and numbers of species. The only reason I mention it is the idea that when plants adapt to living in water (or any other extreme environment), they often change form so much that they don’t resemble even their closer relatives. You can see the plant here: http://www.ubcbotanicalgarden.org/potd/2007/03/hydatellaceae_1.php

The order Chloranthales was previously unplaced – no one was sure what its closest relatives are. Now it is considered to be a sister group to the magnoliids. The magnoliids themselves have not changed in APG III. This branch of the flowering plants includes the laurel and black pepper families, as well as the magnolias. Although their seeds have two cotyledons, they are not closely related to the eudicots. The eudicots are the traditional dicots minus the magnoliids and the basal angiosperm lineages.

In A Tour of the Flowering Plants, I used terms for branches of monocots that have since disappeared. You don’t have to worry about whether to call the Liliales and Asparagales “lilioid monocots” or “petaloid monocots.” Just call them monocots and go on. The only lineage of monocots that gets a special name now is the commelinids. “Lilioid” and “petaloid” should be understood as informal terms that refer to plants that were traditionally lumped in the lily family. Most of them have large, showy tepals.

The major change in the monocot is the grouping of several small families as subfamilies under the enlarged families Amaryllidaceae, Asparagaceae, and Xanthorrhoeaceae. This is all within the order Asparagales. Here’s the breakdown:

The enlarged Amaryllidaceae has the agapanthus subfamily (Agapanthoideae, equivalent to the former Agapanthaceae), the onion subfamily (Alliodeae, equivalent to the former Alliaceae), as well as the amaryllis subfamily (Amaryllidoideae, equivalent to the former Amaryllidaceae). The members of this enlarged family have their flowers in umbels that are enclosed by two bracts when the flowers are in bud.

The enlarged Asparagaceae is really big. It has the Brodiaea subfamily (Brodiaeoideae), the scilla subfamily (Scilloideae, which includes the former hyacinth family, as the tribe Hyacintheae), the agave subfamily (Agavoideae, which includes the former Agavaceae), the Nolina subfamily (Nolinoideae, equivalent to the former Ruscaceae), as well as the asparagus subfamily (Asparagoideae). Yet another subfamily holds several Australasian species such as the cabbage tree, Cordyline.  

Asparagaceae members have flowers in racemes or in umbels that have three or more bracts at their base. The umbels, if present, do not have the pair of enclosing bracts seen in Amaryllidaceae.

The enlarged Xanthorrhoeaceae (the grass tree family) includes the daylily subfamily (Hemerocallidoideae) and the asphodel subfamily (Asphodeloideae), as well as the grass-tree subfamily. I did not include the grass tree family in A Tour of the Flowering Plants because it is native to Australia and not commonly used in North American landscaping.

The cattail family, Typhaceae, got a second genus, Sparganium, the bur-reeds. It’s not hard to see these two aquatics as relatives.

I’ll address the APG III changes to the eudicots in another post.


Pollen cones

April 13, 2010

I was so concerned with getting the photos of the seed cones (ovulate cones) into my last post that I forgot to show the pollen cones of the ponderosa pine. Here are a couple of views.

The young pollen cones of the ponderosa pine.

 

One pink seed cone and many pollen cones ready to release their pollen.


A pine cone tale

April 7, 2010

A major goal of Montessori botany studies is to help children learn to observe and understand plant structures. There are a lot of things going on in the plant world that take a sharp eye and careful observation to find. The life cycle of pines is one of them. It is important for the teacher/guide to show children inconspicuous plant structures such as pine cones throughout the year and explain to them what is happening.

Most people are familiar with conifer cones, although they tend to call all of them “pine cones.” Few have followed the development of a cone through the year – or two years in the case of pines – that it takes for a cone to mature. I have been photographing the development of pine cones and here’s a look at their life cycle.

Pines have two kinds of cones on the same tree, pollen cones and seed cones. The latter are formally called ovulate cones. The trees don’t usually form cones every year. In cone years, the cycle begins as the new shoots elongate in the spring. The seed cones form at the end of the new growth. They look like tiny pink-to-purple bristles.

These are young seed (ovulate) cones on the new shoot of a ponderosa pine.

The pollen cones cluster at the base of the new shoots, beneath the terminal bud. Most of the pollen cones form on the lower branches of the tree, away from the seed cones, but sometimes they form on the same shoot as the seed cones. The wind usually won’t take pollen from the base of the tree to its upper branches, so the arrangement of seed and pollen cones encourages cross-pollination. 

These two cones formed in the previous spring. The one on the right died during the winter. The left one is starting to grow.

  

By early July, the living seed cone has quadrupled in size. Its scales are noticeably green.

Conifers use wind pollination, which requires a lot of pollen to work, and in cone years the trees produce an amazing amount of pollen. Pollen cones tremendously outnumber seed cones. After they release their pollen, most of the spent pollen cones drop off the tree. You can sometimes find dried ones in the branches later in the summer, however.

It takes careful observation to find the budding ovulate cones, even though they can be colorful. They hide among the new needles and are most easily seen from above, the bird’s eye view we don’t usually have. It doesn’t help that the ovulate cones usually form on the higher branches. You may need to pull a branch down so that the children can see the tiny new cones. The little cones of pines don’t grow much during their first year. In the fall, they have become browner and drier looking, but are nearly the same size as they were in the spring.

In the second spring the pine seed cones rapidly enlarge. A shoot I photographed had a pair of seed cones, but one of them had died. It provides a size scale to show how much the live cone has grown. Fertilization is a slow process in pines. It takes about 15 months for the egg cells to form and the pollen tube to grow and deliver the sperm to the eggs. The scales of the seed cones are green until late fall. By that time the seeds are mature. The cone dries and the scales spread apart, releasing the winged seeds. The dried cone may remain on the tree for months or years, until a strong wind brings it down.

In the fall, the seed cone has dried. Its brown scales spread apart and the seeds are released.

In case you need help finding your local pines, look for a conifer tree with needles in bundles of two to five. Other conifers, such as firs or spruces bear their needles singly. Their cones mature in one year, but they can be even harder to see because the seed cones form in the tops of the tree.

Take a look around this spring and see if you can locate some young cones to show your children and to follow through the cone life cycle.

The winged seeds of the pines blend in with the soil and rocks very well.